1 kilogram = 2.2 pounds
All Exolith Lab products are intended for research and STEM education purposes. By purchasing, you agree that the product will be used for research and STEM education purposes.
Simulant Name: MGS-1 Mars Global Simulant
Current Status: Available
Developed By: University of Central Florida
Spec Sheet SDS Citation
Mars Global Simulant (MGS-1) is a mineralogical standard for basaltic soils on Mars, developed based on quantitative mineralogy from the MSL Curiosity rover. It is designed to replicate the Rocknest windblown soil, that is chemically similar to other basaltic soils at disparate landing sites and thus constitutes a “global” basaltic soil composition. MGS-1 is made by sourcing individual minerals, including a proper treatment of the X-ray amorphous component. This is in contrast to previous Mars simulants that were usually sourced from a single terrestrial deposit (basalt or palagonite).
Modified versions include MGS-1S Sulfate ISRU and MGS-1C Clay ISRU, specifically designed for water extraction applications. The root MGS-1 simulant is appropriate to test water extraction from bulk regolith.
The mineral recipe and production methods are available for anyone to reproduce and modify MGS-1 based simulants as they see fit. We are distributing MGS-1 through the CLASS Exolith Lab.
Mineralogy
The mineralogy below is the most up-to-date, superseding that described in Cannon et al. 2019.
Mineral |
Wt.% |
Plagioclase |
27.1 |
Glass-rich basalt |
22.9 |
Pyroxene |
20.3 |
Olivine |
13.7 |
Mg-sulfate |
4.0 |
Ferrihydrite |
3.5 |
Hydrated silica |
3.0 |
Magnetite |
1.9 |
Anhydrite |
1.7 |
Fe-carbonate |
1.4 |
Hematite |
0.5 |
Bulk Chemistry
This table shows the relative abundances of each element detected by X-ray fluorescence (XRF). The relative abundances of elements detected by XRF in geological samples are quantified as oxides. In the simulant, these elements are contained in the minerals described in the Mineralogy table above, and not necessarily in oxide form. These data are from the Hamilton Analytical Lab.
Oxide |
Wt% |
SiO2
|
42.9 |
TiO2
|
0.6
|
Al2O3
|
12.8
|
FeO |
11.2
|
MnO |
0.1
|
MgO |
14.6
|
CaO |
7.4
|
Na2O
|
1.5
|
K2O
|
0.6
|
P2O5
|
0.1 |
LOI* |
5.3
|
Total** |
97.1
|
*Loss on ignition
**Excluding volatiles and trace elements; see spec sheet.
Physical Properties
Mean Particle Size: 90 µm
Particle Size Range: <0.04 µm – 1000 µm
Bulk density*: 1.29 g/cm3
Angle of Repose (Avg): 38.8°
*Note that bulk density is not an inherent property and depends on the level of compaction
Photo Credit: Abigail Glover, Exolith Lab